>

> summary(lm(ctab4[1,] ~ ctab4[5,]))# Emotion Linear Model

 

Call:

lm(formula = ctab4[1, ] ~ ctab4[5, ])

 

Residuals:

������ 1������� 2������� 3������� 4������� 5������� 6

0.51817 -0.834630.505890.07016 -0.910280.65070

 

Coefficients:

����������� Estimate Std. Error t value Pr(>|t|)

(Intercept)�� 0.1094���� 0.7327�� 0.149��� 0.889

ctab4[5, ]�� -0.0356���� 0.1882-0.189��� 0.859

 

Residual standard error: 0.7871 on 4 degrees of freedom

Multiple R-Squared: 0.008871,�� Adjusted R-squared: -0.2389

F-statistic: 0.0358 on 1 and 4 DF,p-value: 0.8591

 

>

> summary(lm(ctab4[2,] ~ ctab4[5,]))# Feeding Linear Model

 

Call:

lm(formula = ctab4[2, ] ~ ctab4[5, ])

 

Residuals:

������ 1������� 2������� 3������� 4������� 5������� 6

0.101080.04046 -0.846470.624690.62276 -0.54253

 

Coefficients:

����������� Estimate Std. Error t value Pr(>|t|)

(Intercept)�� 1.1297���� 0.6246�� 1.809��� 0.145

ctab4[5, ]�� -0.3231���� 0.1604-2.015��� 0.114

 

Residual standard error: 0.671 on 4 degrees of freedom

Multiple R-Squared: 0.5036,���� Adjusted R-squared: 0.3795

F-statistic: 4.058 on 1 and 4 DF,p-value: 0.1142

 

>

> summary(lm(ctab4[4,] ~ ctab4[5,]))# Parenting Linear Model

 

Call:

lm(formula = ctab4[4, ] ~ ctab4[5, ])

 

Residuals:

����� 1������ 2������ 3������ 4������ 5������ 6

-0.20580.4115 -0.38590.18410.1728 -0.1766

 

Coefficients:

����������� Estimate Std. Error t value Pr(>|t|)��

(Intercept) -1.51948��� 0.31417-4.8360.00842 **

ctab4[5, ]�� 0.43873��� 0.08067�� 5.4380.00555 **

---

Signif. codes:0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

Residual standard error: 0.3375 on 4 degrees of freedom

Multiple R-Squared: 0.8809,���� Adjusted R-squared: 0.8511

F-statistic: 29.58 on 1 and 4 DF,p-value: 0.005549

 

>

> summary(lm(ctab4[3,1:3] ~ ctab4[5,1:3]))# SoSex Young Linear Model

 

Call:

lm(formula = ctab4[3, 1:3] ~ ctab4[5, 1:3])

 

Residuals:

������ 1������� 2������� 3

-0.075390.15078 -0.07539

 

Coefficients:

���������� ���Estimate Std. Error t value Pr(>|t|)

(Intercept)��� -0.6277���� 0.2821-2.225��� 0.269

ctab4[5, 1:3]�� 0.4899���� 0.1306�� 3.752��� 0.166

 

Residual standard error: 0.1847 on 1 degrees of freedom

Multiple R-Squared: 0.9337,���� Adjusted R-squared: 0.8674

F-statistic: 14.08 on 1 and 1 DF,p-value: 0.1658

 

>

> summary(lm(ctab4[3,4:6] ~ ctab4[5,1:3]))# SoSex Old Linear Model

 

Call:

lm(formula = ctab4[3, 4:6] ~ ctab4[5, 1:3])

 

Residuals:

����� 4������ 5������ 6

-0.17330.3466 -0.1733

 

Coefficients:

������������� Estimate Std. Error t value Pr(>|t|)

(Intercept)��� -1.1390���� 0.6485-1.756��� 0.329

ctab4[5, 1:3]�� 0.3937���� 0.3002�� 1.311��� 0.415

 

Residual standard error: 0.4245 on 1 degrees of freedom

Multiple R-Squared: 0.6323,���� Adjusted R-squared: 0.2647

F-statistic:1.72 on 1 and 1 DF,p-value: 0.4147

 

>

> ctab4

�������������� 1��������� 2��������� 3���������� 4����������� 5��������� 6

Emotn0.5919764 -0.79642150.50849930.03717099 -0.9788724330.5465149

Feedg0.90769720.5239615 -0.68607060.461982360.136940703 -1.3514592

SoSex -0.21311150.50300300.7667847 -0.91865458 -0.005071878 -0.1313330

Prntg -1.2865621 -0.2305431 -0.58921350.419501220.8470036070.9362774

cntr�� 1.00000002.00000003.00000004.000000005.0000000006.0000000

> matplot(t(ctab4[1:4,]))