>

> summary(lm(ctab4[1,] ~ ctab4[5,]))# Emotion Linear Model

 

Call:

lm(formula = ctab4[1, ] ~ ctab4[5, ])

 

Residuals:

������ 1������� 2������� 3������� 4������� 5������� 6

0.29144 -0.02437 -0.34639 -0.10334 -0.113920.29656

 

Coefficients:

����������� Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.21620��� 0.26213-0.825��� 0.456

ctab4[5, ]�� 0.05230��� 0.06731�� 0.777��� 0.481

 

Residual standard error: 0.2816 on 4 degrees of freedom

Multiple R-Squared: 0.1311,���� Adjusted R-squared: -0.08608

F-statistic: 0.6037 on 1 and 4 DF,p-value: 0.4806

 

>

> summary(lm(ctab4[2,] ~ ctab4[5,]))# Feeding Linear Model

 

Call:

lm(formula = ctab4[2, ] ~ ctab4[5, ])

 

Residuals:

������ 1������� 2������� 3������� 4������� 5������6

-0.168190.075590.40395 -0.18973 -0.293820.17220

 

Coefficients:

����������� Estimate Std. Error t value Pr(>|t|)��

(Intercept)1.07833��� 0.27505�� 3.9210.01724 *

ctab4[5, ]-0.34710��� 0.07063-4.9150.00796 **

---

Signif. codes:0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 

Residual standard error: 0.2954 on 4 degrees of freedom

Multiple R-Squared: 0.8579,���� Adjusted R-squared: 0.8224

F-statistic: 24.15 on 1 and 4 DF,p-value: 0.00796

 

>

> summary(lm(ctab4[4,] ~ ctab4[5,]))# Parenting Linear Model

 

Call:

lm(formula = ctab4[4, ] ~ ctab4[5, ])

 

Residuals:

����� 1������ 2������ 3������ 4������ 5������ 6

1.1855 -0.6074 -1.1390 -0.36760.65440.2741

 

Coefficients:

����������� Estimate Std. Error t value Pr(>|t|)

(Intercept)-0.8168���� 0.8966-0.911��� 0.414

ctab4[5, ]��� 0.2815���� 0.2302�� 1.223��� 0.289

 

Residual standard error: 0.9631 on 4 degrees of freedom

Multiple R-Squared: 0.2721,���� Adjusted R-squared: 0.09013

F-statistic: 1.495 on 1 and 4 DF,p-value: 0.2885

 

>

> summary(lm(ctab4[3,] ~ ctab4[5,]))# SoSex Linear Model

 

Call:

lm(formula = ctab4[3, ] ~ ctab4[5, ])

 

Residuals:

����� 1������ 2������ 3������ 4������ 5������ 6

-1.30870.55611.08140.6607 -0.2467 -0.7429

 

Coefficients:

����������� Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.04532��� 0.95855-0.047��� 0.965

ctab4[5, ]�� 0.01330��� 0.24613�� 0.054��� 0.960

 

Residual standard error: 1.03 on 4 degrees of freedom

Multiple R-Squared: 0.0007289,Adjusted R-squared: -0.2491

F-statistic: 0.002918 on 1 and 4 DF,p-value: 0.9595

 

>

> summary(lm(ctab4[3,1:3] ~ ctab4[5,1:3]))# SoSex Young Linear Model

 

Call:

lm(formula = ctab4[3, 1:3] ~ ctab4[5, 1:3])

 

Residuals:

����� 1������ 2�����3

-0.22330.4465 -0.2233

 

Coefficients:

������������� Estimate Std. Error t value Pr(>|t|)

(Intercept)��� -2.3258���� 0.8354-2.784��� 0.220

ctab4[5, 1:3]�� 1.2084���� 0.3867�� 3.125��� 0.197

 

Residual standard error: 0.5469 on 1 degrees of freedom

Multiple R-Squared: 0.9071,���� Adjusted R-squared: 0.8142

F-statistic: 9.764 on 1 and 1 DF,p-value: 0.1972

 

>

> summary(lm(ctab4[3,4:6] ~ ctab4[5,1:3]))# SoSex Old Linear Model

 

Call:

lm(formula = ctab4[3, 4:6] ~ ctab4[5, 1:3])

 

Residuals:

������ 4������� 5������� 6

0.06852 -0.137050.06852

 

Coefficients:

������������� Estimate Std. Error t value Pr(>|t|)

(Intercept)���� 1.2886���� 0.2564�� 5.026��� 0.125

ctab4[5, 1:3]-0.6885���� 0.1187-5.801��� 0.109

 

Residual standard error: 0.1678 on 1 degrees of freedom

Multiple R-Squared: 0.9711,���� Adjusted R-squared: 0.9423

F-statistic: 33.65 on 1 and 1 DF,p-value: 0.1087

 

>

> ctab4

�������������� 1��������� 2��������� 3���������� 4���������� 5��������� 6

Emotn0.1275406 -0.1359727 -0.4056939 -0.11034841 -0.068629340.3941489

Feedg0.56304510.45971720.4409716 -0.49981337 -0.95100651 -0.8320921

SoSex -1.34073160.53741591.07597070.66858152 -0.22549639 -0.7084376

Prntg0.6501459 -0.8611604 -1.1112485 -0.058419741.245132231.1463808

cntr�� 1.00000002.00000003.00000004.000000005.000000006.0000000

> matplot(t(ctab4[1:4,]))